
8. Computational Complexity

Pukar Karki
Assistant Professor

09/23/22 2

Introduction

✔ Some common functions, ordered by how fast they grow are
highlighted below.

✔ Computer Scientists divide these functions into two classes:

09/23/22 3

Introduction

✔ Polynomial functions: Any function that is O(nk), i.e. bounded from
above by nk for some constant k.

E.g. O(1), O(log n), O(n), O(n × log n), O(n2), O(n3)

✔ Here the word ‘polynomial’ is used to lump together functions that are
bounded from above by polynomials. So, log n and n × log n, which
are not polynomials in our original sense, are polynomials by our
alternative definition, because they are bounded from above by, e.g.,
n and n2 respectively.

09/23/22 4

Introduction

✔ Super Polynomial functions: The remaining functions.

E.g. O(2n), O(n!), O(nn)

✔ A function of the form kn is genuinely exponential.

✔ But now some functions which are worse than polynomial but not quite
exponential, such as O(nlog n) also fall in this category.

✔ And some functions which are worse than exponential, such as the super-
exponentials, e.g. O(nn), also fall in this category.

09/23/22 5

Introduction
✔ The reasons for lumping functions together into these two broad

classes can be elucidated by the following table.

09/23/22 6

Polynomial Running Time and Super Polynomial
Running Time

✔ On the basis of this classification of functions into polynomial and
exponential, we can classify algorithms:

✔ Polynomial-Time Algorithm: an algorithm whose order-of-magnitude time
performance is bounded from above by a polynomial function of n, where n
is the size of its inputs.

✔ Super Polynomial-Time Algorithm: an algorithm whose order-of-
magnitude time performance is not bounded from above by a polynomial
function of n.

09/23/22 7

Polynomial Running Time and Super Polynomial
Running Time

✔ The table below depicts the time taken by different algorithms with
different growth rate(assume that one instruction can be executed
every microsecond).

09/23/22 8

Tractable and Intractable Problems

✔ And, in a similar way, we can classify problems into two broad classes:

✔ Tractable Problem: a problem that is solvable by a polynomial-time
algorithm. The upper bound is polynomial.

✔ Intractable Problem: a problem that cannot be solved by a polynomial-time
algorithm. The lower bound is exponential.

09/23/22 9

Tractable and Intractable Problems

● Here are examples of tractable problems (ones with known polynomial-time
algorithms):

– Searching an unordered list

– Searching an ordered list

– Sorting a list

– Multiplication of integers

– Finding a minimum spanning tree in a graph.

09/23/22 10

Tractable and Intractable Problems

✔ Here are examples of intractable problems (ones that have been proven to
have no polynomial-time algorithm).

– Towers of Hanoi: We can prove that any algorithm that solves this
problem must have a worst-case running time that is at least 2n − 1.

– List all permutations (all possible orderings) of n numbers.

– Travelling Salesman Problem.

09/23/22 11

Class P Problem

✔ Class P problems refer to problems where an algorithm would take a
polynomial amount of time to solve, or where Big-O is a polynomial
(i.e. O(1), O(n), O(n²), etc).

✔ These are problems that would be considered ‘easy’ to solve, and
thus do not generally have immense run times.

09/23/22 12

Class NP Problem

✔ The class of problems for which an answer can be verified in
polynomial time is NP, which stands for "nondeterministic polynomial
time.

✔ The class NP consists of those problems that are verifiable in
polynomial time i.e. it is the class of decision problems for which it is
easy to check the correctness of a claimed answer, with the aid of a
little extra information.

✔ Hence, we aren’t asking for a way to find a solution, but only to verify
that an alleged solution really is correct.

✔ Every problem in this class can be solved in exponential time using
exhaustive search.

✔ Eg: Travelling Salesman Problem

09/23/22 13

Class NP-Complete Problem

✔ A problem is NP-complete if all other problems in NP reduce to it.

✔ This is a very strong requirement indeed.

✔ For a problem to be NP-complete, it must be useful in solving every
search problem in the world!

✔ Informally, if any NP-complete problem can be solved in polynomial
time, then every problem in NP has a polynomial-time algorithm.

09/23/22 14

Class NP-Complete Problem

✔ No polynomial-time algorithm has yet been discovered for an NP-
complete problem, nor has anyone yet been able to prove that no
polynomial-time algorithm can exist for any one of them.

✔ This so-called P ≠ NP question has been one of the deepest, most
perplexing open research problems in theoretical computer science
since it was first posed in 1971.

09/23/22 15

09/23/22 16

Class NP-Hard Problem

✔ NP-hardness (non-deterministic polynomial-time hardness) is the
defining property of a class of problems that are informally "at least as
hard as the hardest problems in NP".

✔ A simple example of an NP-hard problem is the subset sum problem.

09/23/22 17

09/23/22 18

Cook’s Theorem

✔ Cook–Levin theorem, also known as Cook's theorem, states that the
Boolean satisfiability problem is NP-complete.

✔ That is, it is in NP, and any problem in NP can be reduced in
polynomial time by a deterministic Turing machine to the Boolean
satisfiability problem.

09/23/22 19

Cook’s Theorem

What is a Boolean satisfiability problem?

✔ Boolean satisfiability problem is a problem of determining whether a
boolean expression that combines Boolean variables using Boolean
operators is satisfiable or unsatisfiable.

✔ An expression is satisfiable if there is some assignment of truth
values to the variables that makes the entire expression true.

✔ An expression is unsatisfiable if it is not possible to assign such
values.

09/23/22 20

Cook’s Theorem

What is a Boolean satisfiability problem?

✔ A boolean expression A v B’ is satisfiable because when A = TRUE
and B = FALSE then the expression evaluates to be TRUE.

✔ A boolean expression A ^ A’ is unsatisfiable because it always gives
false result.

09/23/22 21

Cook’s Theorem

✔ An important consequence of this theorem is that if there exists a
deterministic polynomial time algorithm for solving Boolean
satisfiability, then every NP problem can be solved by a
deterministic polynomial time algorithm(so the complexity class
NP would be equal to the complexity class P).

✔ The question of whether such an algorithm for Boolean satisfiability
exists is thus equivalent to the P versus NP problem, which is widely
considered the most important unsolved problem in theoretical
computer science.

09/23/22 22

Reducibility

✔ Our plan is to explore the space of computationally hard problems,
eventually arriving at a mathematical characterization of a large class
of them.

✔ Our basic technique in this exploration is to compare the relative
difficulty of different problems; we’d like to formally express
statements like, “Problem X is at least as hard as problem Y.”

✔ We will formalize this through the notion of reduction: we will show
that a particular problem X is at least as hard as some other problem
Y by arguing that, if we had a “black box” capable of solving X, then
we could also solve Y.

09/23/22 23

Reducibility

✔ To make this precise, we add the assumption that X can be solved in
polynomial time directly to our model of computation.

✔ Suppose we had a black box that could solve instances of a problem
X; if we write down the input for an instance of X, then in a single
step, the black box will return the correct answer. We can now ask the
following question:

Can arbitrary instances of problem Y be solved using a
polynomial number of standard computational steps,
plus a polynomial number of calls to a black box that

solves problem X?

09/23/22 24

Reducibility

✔ If the answer to this question is yes, then we write Y ≤P X; we read
this as “Y is polynomial-time reducible to X,” or “X is at least as hard
as Y (with respect to polynomial time).”

09/23/22 25

Reducibility

✔ Intuitively, a problem Q can be reduced to another problem Q’ if any
instance of Q can be “easily rephrased” as an instance of Q’, the
solution to which provides a solution to the instance of Q.

✔ For example, the problem of solving linear equations in an
indeterminate x reduces to the problem of solving quadratic
equations.

✔ Given an instance ax + b = 0, we transform it to 0x2 + ax + b = 0,
whose solution provides a solution to ax + b = 0.

✔ Thus, if a problem Q reduces to another problem Q’, then Q is in a
sense, “no harder to solve” than Q’.

09/23/22 26

Reducibility

An important consequence of our definition of ≤P is the following.

✔ Suppose Y ≤P X and there actually exists a polynomial-time algorithm
to solve X. Then, problem Y becomes an algorithm that involves a
polynomial number of steps, plus a polynomial number of calls to a
subroutine that runs in polynomial time; in other words, it has become
a polynomial-time algorithm.

✔ We have therefore proved the following fact.

Suppose Y ≤P X. If X can be solved in polynomial time, then Y
can be solved in polynomial time.

✔ Also

Suppose Y ≤P X. If Y cannot be solved in polynomial time, then X
cannot be solved in polynomial time.

09/23/22 27

A First Reduction: Independent Set and Vertex Cover

✔ In a graph G = (V, E), we say a set of
nodes S V is independent if no two ⊆
nodes in S are joined by an edge.

✔ It is easy to find small independent
sets in a graph; the hard part is to find
a large independent set, since you
need to build up a large collection of
nodes without ever including two
neighbors.

✔ For example, the set of nodes {3, 4, 5}
is an independent set of size 3 in the
graph in Figure.

✔ And the set of nodes {1, 4, 5, 6} is a
larger independent set.

09/23/22 28

A First Reduction: Independent Set and Vertex Cover

✔ We phrase Independent Set as follows.

Given a graph G and a number k, does G contain an independent set
of size at least k?

09/23/22 29

A First Reduction: Independent Set and Vertex Cover

✔ Given a graph G = (V, E), we say that
a set of nodes S V is a vertex cover ⊆
if every edge e E has at least one ∈
end in S.

✔ In a vertex cover, the vertices do the
“covering,” and the edges are the
objects being “covered.”

✔ Now, it is easy to find large vertex
covers in a graph (for example, the full
vertex set is one); the hard part is to
find small ones.

✔ In the graph in Figure, the set of
nodes {1, 2, 6, 7} is a vertex cover of
size 4, while the set {2, 3, 7} is a
vertex cover of size 3.

09/23/22 30

A First Reduction: Independent Set and Vertex Cover

✔ We formulate the Vertex Cover problem as follows

Given a graph G and a number k, does G contain a vertex cover of
size at most k?

09/23/22 31

A First Reduction: Independent Set and Vertex Cover

✔ We now show that they are equivalently hard, by establishing that

Independent Set ≤P Vertex Cover and Vertex Cover ≤P Independent Set

✔ This will be a direct consequence of the following fact

✔ Let G = (V, E) be a graph. Then S is an independent set if and only if its
complement V − S is a vertex cover.

09/23/22 32

A First Reduction: Independent Set and Vertex Cover

Let G = (V, E) be a graph. Then S is an independent set if and only if its
complement V − S is a vertex cover.

Proof:

✔ First, suppose that S is an independent set. Consider an arbitrary edge
e = (u, v). Since S is independent, it cannot be the case that both u and
v are in S; so one of them must be in V − S. It follows that every edge
has at least one end in V − S, and so V − S is a vertex cover.

✔ Conversely, suppose that V − S is a vertex cover. Consider any two
nodes u and v in S. If they were joined by edge e, then neither end of e
would lie in V − S, contradicting our assumption that V − S is a vertex
cover. It follows that no two nodes in S are joined by an edge, and so S
is an independent set.

09/23/22 33

A First Reduction: Independent Set and Vertex Cover

Independent Set ≤P Vertex Cover.

Proof: If we have a black box to solve Vertex Cover, then we can decide
whether G has an independent set of size at least k by asking the black
box whether G has a vertex cover of size at most n − k.

Vertex Cover ≤P Independent Set.

Proof: If we have a black box to solve Independent Set, then we can
decide whether G has a vertex cover of size at most k by asking the black
box whether G has an independent set of size at least n − k.

Conclusion: Although, we don’t know how to solve either Independent Set
or Vertex Cover efficiently, above tell us how we could solve either given an
efficient solution to the other, and hence these two facts establish the
relative levels of difficulty of these problems.

09/23/22 34

The Satisfiability Problem

● Suppose we are given a set X of n Boolean variables x1, . . . , xn; each
can take the value 0 or 1 (equivalently, “false” or “true”).

● By a term over X, we mean one of the variables xi or its negation ~xi.

● Finally, a clause is simply a disjunction of distinct terms

● We say the clause has length ℓ if it contains ℓ terms.

09/23/22 35

The Satisfiability Problem

● A truth assignment for X is an assignment of the value 0 or 1 to each xi.

In other words, it is a function ν : X → {0, 1}.

● An assignment satisfies a clause C if it causes C to evaluate to 1 under
the rules of Boolean logic. In simple words, this is equivalent to
requiring that at least one of the terms in C should receive the value 1.

● An assignment satisfies a collection of clauses C1, . . . , Ck if it causes
all of the Ci to evaluate to 1. In simple words, if it causes the conjunction

● to evaluate to 1. In this case, we will say that ν is a satisfying
assignment with respect to C1, . . . , Ck and that the set of clauses
C1, . . . , Ck is satisfiable.

09/23/22 36

The Satisfiability Problem

Example

Suppose we have the three clauses

✔ Then the truth assignment ν that sets all variables to 1 is not a
satisfying assignment, because it does not satisfy the second of these
clauses

✔ The truth assignment ν′ that sets all variables to 0 is a satisfying
assignment.

09/23/22 37

The Satisfiability Problem

✔ We can now state the Satisfiability Problem, also referred to as SAT:

Given a set of clauses C1, . . . , Ck over a set of variables
X = {x1, . . . , xn}, does there exist a satisfying truth

assignment?

09/23/22 38

The Satisfiability Problem

✔ There is a special case of SAT that will turn out to be equivalently
difficult and is somewhat easier to think about; this is the case in which
all clauses contain exactly three terms (corresponding to distinct
variables).

✔ We call this problem 3-Satisfiability, or 3-SAT:

Given a set of clauses C1, . . . , Ck, each of length 3, over
a set of variables X = {x1, . . . , xn}, does there exist a

satisfying truth assignment?

09/23/22 39

Reducing 3-SAT to Independent Set

✔ Now, we will show that 3-SAT ≤P Independent Set.

✔ The difficulty in proving a thing like this is clear; 3-SAT is about setting
Boolean variables in the presence of constraints, while Independent
Set is about selecting vertices in a graph.

✔ To solve an instance of 3-SAT using a black box for Independent Set,
we need a way to encode all these Boolean constraints in the nodes
and edges of a graph, so that satisfiability corresponds to the
existence of a large independent set.

09/23/22 40

3-SAT ≤P Independent Set

Proof:

✔ We have a black box for Independent Set and want to solve an
instance of 3-SAT consisting of variables X = {x1, . . . , xn} and clauses
C1, . . . , Ck.

✔ The key to thinking about the reduction is to realize that there are two
conceptually distinct ways of thinking about an instance of 3-SAT.

09/23/22 41

3-SAT ≤P Independent Set

Proof:

✔ We have a black box for Independent Set and want to solve an
instance of 3-SAT consisting of variables X = {x1, . . . , xn} and clauses
C1, . . . , Ck.

✔ The key to thinking about the reduction is to realize that there are two
conceptually distinct ways of thinking about an instance of 3-SAT.

First way,

✔ You have to make an independent 0/1 decision for each of the n
variables, and you succeed if you manage to achieve one of three
ways of satisfying each clause.

09/23/22 42

3-SAT ≤P Independent Set

Proof:

Second Way,

✔ You have to choose one term from each clause, and then find a truth
assignment that causes all these terms to evaluate to 1, thereby
satisfying all clauses.

✔ So you succeed if you can select a term from each clause in such a
way that no two selected terms “conflict”; we say that two terms
conflict if one is equal to a variable xi and the other is equal to its
negation ~xi.

✔ If we avoid conflicting terms, we can find a truth assignment that
makes the selected terms from each clause evaluate to 1.

09/23/22 43

3-SAT ≤P Independent Set

Proof:

Second Way,

09/23/22 44

3-SAT ≤P Independent Set

Proof:

✔ Our reduction will be based on this second view of the 3-SAT instance;
here is how we encode it using independent sets in a graph.

✔ First, construct a graph G = (V, E) consisting of 3k nodes grouped into k
triangles as shown in Figure

(x1 x∨ 2 x∨ 4) (~x∧ 2 x∨ 3 x∨ 5) (~x∧ 1 x∨ 4 x∨ 6).

x1 x2

x4

~x2 x3

x5

~x1 x4

x6

09/23/22 45

3-SAT ≤P Independent Set

Proof:

✔ That is, for i = 1, 2, . . . , k, we construct three vertices vi1, vi2, vi3 joined
to one another by edges. We give each of these vertices a label; vij is
labeled with the jth term from the clause Ci of the 3-SAT instance.

x1 x2

x4

~x2 x3

x5

~x1 x4

x6

(x1 x∨ 2 x∨ 4) (~x∧ 2 x∨ 3 x∨ 5) (~x∧ 1 x∨ 4 x∨ 6).

v11 v12

v13

v21 v22

v23

v31 v32

v33

09/23/22 46

3-SAT ≤P Independent Set

Proof:

✔ Before proceeding, consider what the independent sets of size k look like in
this graph: Since two vertices cannot be selected from the same triangle,
they consist of all ways of choosing one vertex from each of the triangles.

✔ This is implementing our goal of choosing a term in each clause that will
evaluate to 1; but we have so far not prevented ourselves from choosing
two terms that conflict.

x1 x2

x4

~x2 x3

x5

~x1 x4

x6

v11 v12

v13

v21 v22

v23

v31 v32

v33

(x1 x∨ 2 x∨ 4) (~x∧ 2 x∨ 3 x∨ 5) (~x∧ 1 x∨ 4 x∨ 6).

09/23/22 47

3-SAT ≤P Independent Set

Proof:

✔ We encode conflicts by adding some more edges to the graph: For each pair of
vertices whose labels correspond to terms that conflict, we add an edge between
them.

✔ Have we now destroyed all the independent sets of size k, or does one still exist? It’s
not clear; it depends on whether we can still select one node from each triangle so
that no conflicting pairs of vertices are chosen.

x1 x2

x4

~x2 x3

x5

~x1 x4

x6

v11 v12

v13

v21 v22

v23

v31 v32

v33

(x1 x∨ 2 x∨ 4) (~x∧ 2 x∨ 3 x∨ 5) (~x∧ 1 x∨ 4 x∨ 6).

09/23/22 48

3-SAT ≤P Independent Set

Proof:

✔ Let’s claim, precisely, that the original 3-SAT instance is satisfiable if
and only if the graph G we have constructed has an independent set of
size at least k.

x1 x2

x4

~x2 x3

x5

~x1 x4

x6

v11 v12

v13

v21 v22

v23

v31 v32

v33

(x1 x∨ 2 x∨ 4) (~x∧ 2 x∨ 3 x∨ 5) (~x∧ 1 x∨ 4 x∨ 6).

09/23/22 49

3-SAT ≤P Independent Set

Proof:

✔ First, if the 3-SAT instance is satisfiable, then each triangle in our graph contains at
least one node whose label evaluates to 1. Let S be a set consisting of one such
node from each triangle.

✔ We claim S is independent; for if there were an edge between two nodes u, v S, ∈
then the labels of u and v would have to conflict; but this is not possible, since they
both evaluate to 1.

x1 x2

x4

~x2 x3

x5

~x1 x4

x6

v11 v12

v13

v21 v22

v23

v31 v32

v33

(x1 x∨ 2 x∨ 4) (~x∧ 2 x∨ 3 x∨ 5) (~x∧ 1 x∨ 4 x∨ 6).

09/23/22 50

3-SAT ≤P Independent Set

Proof:

✔ Conversely, suppose our graph G has an independent set S of size at least k.
Then, first of all, the size of S is exactly k, and it must consist of one node from
each triangle. Now, we claim that there is a truth assignment ν for the variables
in the 3-SAT instance with the property that the labels of all nodes in S evaluate
to 1. Here is how we could construct such an assignment ν.

✔ If xi appears as a label of a node in S, we set ν(xi) = 1, and otherwise we set
ν(xi) = 0. By constructing ν in this way, all labels of nodes in S will evaluate to 1.

x1 x2

x4

~x2 x3

x5

~x1 x4

x6

v11 v12

v13

v21 v22

v23

v31 v32

v33

(x1 x∨ 2 x∨ 4) (~x∧ 2 x∨ 3 x∨ 5) (~x∧ 1 x∨ 4 x∨ 6).

09/23/22 51

3-SAT ≤P Independent Set

Proof:

✔ Since G has an independent set of size at least k if and only if the
original 3-SAT instance is satisfiable, the reduction is complete.

09/23/22 52

Transitivity of Reductions

If Z ≤P Y, and Y ≤P X, then Z ≤P X.
Proof:

✔ Given a black box for X, we show how to solve an instance of Z
essentially, we just compose the two algorithms implied by Z ≤P Y and
Y ≤P X.

✔ We run the algorithm for Z using a black box for Y; but each time the
black box for Y is called, we simulate it in a polynomial number of
steps using the algorithm that solves instances of Y using a black box
for X.

09/23/22 53

Transitivity of Reductions

✔ Transitivity can be quite useful.

✔ For example, since we have proved

3-SAT ≤P Independent Set ≤P Vertex Cover

we can conclude that 3-SAT ≤P Vertex Cover

09/23/22 54

General Strategy for Proving New Problems NP-Complete

✔ Given a new problem X, here is the basic strategy for proving it is NP-
complete.

1. Prove that X NP.∈

2. Choose a problem Y that is known to be NP-complete.

3. Prove that Y ≤P X.

09/23/22 55

General Strategy for Proving New Problems NP-Complete

✔ We can refine the strategy above to the following outline of an NP-
completeness proof.

1. Prove that X NP.∈

2. Choose a problem Y that is known to be NP-complete.

3. Consider an arbitrary instance sY of problem Y, and show how to
construct, in polynomial time, an instance sX of problem X that
satisfies the following properties:

(a) If sY is a “yes” instance of Y, then sX is a “yes” instance of X.

(b) If sX is a “yes” instance of X, then sY is a “yes” instance of Y.

In other words, this establishes that sY and sX have the same answer.

09/23/22 56

Review Questions

1) Explain the statement.

“Boolean satisfiability problem is NP-complete.”

2) Explain tractable and intractable problems.

3) Explain the complexity classes, P, NP, NP Complete and NP-Hard.

4) Show that Independent Set ≤P Vertex Cover.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

